Abstract
The thermal fatigue of a heat-resistant Fe-0.45C-26Cr-33Ni-2Si-2Nb alloy is studied during thermal cycling in the temperature range 50–900°C up to 1000 cycles. The alloy is investigated in the initial as-cast state and after isothermal annealing during 1000 h at a temperature of 800, 900, 1000, or 1100°C; these conditions imitate the temperature conditions of operation and the structural state of various layers in a reaction pipe in the radiant furnace coils of ethylene production installations. After isothermal annealing, the thermal fatigue life of the alloy is found to decrease by a factor of 1.7–1.2 as compared to the initial as-cast state. It is shown that isothermal annealing and subsequent thermal cycling lead to the formation of carbide precipitates of various sizes in the alloy structure that affect the thermal fatigue life of the alloy. Thermal fatigue cracks are shown to form and grow predominantly at the sites of accumulation of fine carbide precipitates. Coarse (>10 μm) precipitates retard crack growth, and cracks branch near such precipitates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.