Abstract
The primary vessel of ITER tritium SDS bed is made of stainless steel. It is heated beyond 500°C to desorb tritium. During this process the primary vessel is subject to thermal stress. And it is also subject to thermal fatigue by the iterative process of absorption and desorption. In addition, its operation temperature range is in the thermal creep temperature region. Therefore, the tritium SDS bed should have sufficient design stress intensity under the high temperature operating conditions. It should also be free of damage due to fatigue during the design life. Thermal analysis and structural analysis was performed using a finite element method to calculate the temperature and the stress distribution of the ITER tritium SDS bed due to the internal pressure and thermal loads. The thermal fatigue and creep effects were also evaluated since the tritium SDS bed was heated to hot temperature region where creep occurs. Based on the distribution of the primary stress and secondary stress results, two evaluation cross-sections were selected. The evaluation showed that the calculated value on the cross-sections satisfied all of the limits of the design code requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.