Abstract

It has always been difficult to observe thermally induced explosions, because the onset is unpredictable. By use of ultrasound to induce intense, localized frictional heating at the surface of crystals embedded in a flexible polymer, we have created a new method for the initiation of microexplosions under conditions where temporal and spatially resolved observations can be made. Specifically, we report the use of ultrasound to flash-heat polymer-embedded 10 000 K/s. By using this extremely rapid heating on small samples, we were able to confine the explosion to narrow regions in time and space. The explosion was measured using dual thermal imagers providing temporal and spatial resolutions of 1 μs and 15 μm. Surprisingly, the explosions always occurred in two stages, an initial 0.1 ms stage and a subsequent 100 ms stage. The first stage of RDX explosion (2500 K lasting 140 μs) was less violent than that for HMX (4400 K lasting 70 μs), which is c...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.