Abstract

We study stochastic effects in a thermochemical explosive system exchanging heat with a thermostat. We use a mesoscopic description based on the master equation for temperature which includes a transition rate for the Newtonian thermal transfer process. This master equation for a continuous variable has a complicated integro-differential form and to solve it we resort to Monte Carlo simulations. The results of the master equation approach are compared with those of direct simulations of the microscopic particle dynamics in a dilute gas system. We study the Semenov model in the vicinity of the bifurcation related to the emergence of bistability. The probability distributions of ignition time are calculated below and above the bifurcation point. An approximate analytical prediction for the main statistical properties of ignition time is deduced from the Fokker–Planck equation derived from the master equation. The theoretical results are compared with the experimental data obtained for cool flames of a hydrocarbon in the explosive regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.