Abstract

The influence of short-term (5-15 min) highly energetic ball milling on the ignition characteristics of a gasless heterogeneous Ni-Al reactive system has been investigated. By using Al-Ni clad particles (30-40 microm diameter Al spheres coated by a 3-3.5 microm layer of Ni, that corresponds to a 1:1 Ni/Al atomic ratio), it was shown that such mechanical treatment leads to a significant decrease in the self-ignition temperature of the system. For example, after 15 min of ball milling, the ignition temperature appears to be approximately 600 K, well below the eutectic (913 K) in the considered binary system, which is the ignition temperature for the initial clad particles. Thus, it was demonstrated that the thermal explosion process for mechanically treated reactive media can be solely defined by solid-state reactions. Additionally, thermal analysis measurements revealed that mechanical activation results in a substantial decrease in the effective activation energy (from 84 to 28 kcal/mol) of interaction between Al and Ni. This effect, that is, mechanical activation of chemical reaction, is connected to a substantial increase of contact area between reactive particles and fresh interphase boundaries formed in an inert atmosphere during ball milling. It is also important that by varying the time of mechanical activation one can precisely control the ignition temperature in high-density energetic heterogeneous systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call