Abstract

The measurement of wood thermal expansion at fixed values of moisture content (MC) between the dry state and the cell wall saturation point is a very difficult task, as MC varies with temperature. Being hygroscopic deformations much larger than thermal ones, in order to evaluate the latter, when changing temperature also relative humidity should be adapted. To achieve this goal a special apparatus was designed to vary relative humidity as a function of temperature to keep MC constant, and thus to measure the thermal expansion coefficient without hygroscopic effects. The moisture content was assessed to remain constant by testing the heating cycle of each specimen, keeping the specimen itself on a precision balance before the thermal expansion measurement. The radial coefficients of thermal expansion of ten specimens of Norway spruce were measured at 7.0% and 11.4% MC. No statistically significant differences were found between the two data sets, indicating a negligible effect of moisture content on wood thermal expansion at MC values typical of indoor environments. However, the thermal expansion coefficients measured at 7.0% and 11.4% MC seem to be higher than the values for dry state reported in literature, indicating an effect of the moisture content.

Highlights

  • The thermal expansion of wood has been extensively investigated since the last century

  • Hendershot [3] reported the values of αlon and αtrasv in the dry state of several species, but at the same time he tried to evaluate the effect of moisture content by measuring αtrasv at 4% MC and αlon at 5%

  • The main aim of the present paper is to investigate the contribution of thermal expansion to the dimensional changes of Norway spruce

Read more

Summary

Introduction

The thermal expansion of wood has been extensively investigated since the last century. A short review of previous studies is presented and the key findings summarized, with the aim of setting the background of the research described in the present paper. Studies were performed by Villari [1] that measured the coefficient of thermal expansion (α) of several species (silver fir, chestnut, poplar, pine, walnut, etc.) in transversal (αtrasv) and longitudinal (αlon) directions in dry state. With increase in temperature (T) from 2 °C to 34 °C, αtrasv increased from 5 up to 25 times αlon. Hendershot [3] reported the values of αlon and αtrasv in the dry state of several species, but at the same time he tried to evaluate the effect of moisture content by measuring αtrasv at 4% MC and αlon at 5%

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call