Abstract

The crystallographic thermal expansion coefficients of Ti5Si3 from 20 to 1000 °C as a function of B, C, N, O, or Ge content were measured by high-temperature x-ray diffraction using synchrotron sources at Cornell University (Cornell High Energy Synchrotron Source; CHESS) and Argonne National Laboratory (Advanced Photon Source; APS). Whereas the ratio of the thermal expansion coefficients along the c and a axes was approximately 3 for pure Ti5Si3, this ratio decreased to about 2 when B, C, or N atoms were added. Additions of O and Ge were less efficient at reducing this thermal expansion anisotropy. The extent by which the thermal expansion was changed when B, C, N, or O atoms were added to Ti5Si3 correlated with their expected effect on bonding in Ti5Si3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.