Abstract

Thermal defects in ionic materials can have important effects on their thermal expansion at high temperatures. Earlier treatments of thermal expansion generally have neglected or not considered such effects. Here an analytical expression for the thermal defect contribution and its dependence on pressure is derived. We show that such contributions, which are significant at high temperature and atmospheric pressure, become negligible at pressures above approximately 0.25 to 0.35 of the bulk modulus at standard conditions. At very high pressure, based on Birch's (1968) relationship between high and low pressure thermal expansion, and assuming αKTis independent of pressure, NaCl thermal expansion can be calculated within the constraints of a semi-empirical quasi-harmonic perfect crystal model. The calculations are compared with available theoretical and experimental values over an extended temperature/pressure regime. The method should have broad applicability for other ionic crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.