Abstract

Atomically thin two-dimensional (2D) materials have shown great potential for applications in nanoscale electronic and optical devices. A fundamental property of these 2D flakes that needs to be well-characterized is the thermal expansion coefficient (TEC), which is instrumental to the dry transfer process and thermal management of 2D material-based devices. However, most of the current studies of 2D materials' TEC extensively rely on simulations due to the difficulty of performing experimental measurements on an atomically thin, micron-sized, and optically transparent 2D flake. In this work, we present a three-substrate approach to characterize the TEC of monolayer molybdenum disulfide (MoS2) using micro-Raman spectroscopy. The temperature dependence of the Raman peak shift was characterized with three different substrate conditions, from which the in-plane TEC of monolayer MoS2 was extracted on the basis of lattice symmetries. Independently from two different phonon modes of MoS2, we measured the in-plane TECs as (7.6 ± 0.9) × 10-6 K-1 and (7.4± 0.5) × 10-6 K-1, respectively, which are in good agreement with previously reported values based on first-principle calculations. Our work is not only useful for thermal mismatch reduction during material transfer or device operation but also provides a general experimental method that does not rely on simulations to study key properties of 2D materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.