Abstract

The thermally induced strain response of unidirectional P100S/AZ91D carbon fibre-reinforced magnesium composite was studied over five cycles in the ±100 °C temperature range. A temperature-dependent one-dimensional model was employed to predict the anticipated response to the cycling thermal environment. Strain hysteresis was observed during cycling and attributed to matrix yielding. First cycle residual plastic strains were modelled with reasonable agreement. Experimental results deviated from predictions during subsequent cycles with continued thermal ratcheting shifting the hysteresis loops to higher strains with increasing cycles. This was thought to be associated with interfacial debonding and frictional sliding at fibre/matrix interfaces. The effect of thermal treatment on composite expansion behaviour was investigated and the results discussed in terms of minimising thermally induced deformations during anticipated service conditions. Treatments were found to affect the first cycle behaviour, reducing in particular residual plastic strain generation. Matrix yield strength was exceeded over the thermal cycle due to a lack of sufficient hardening, and since interfacial conditions were unaltered, interfacial sliding and thermal ratcheting could not be eliminated. The potential for improvement of C/Mg composite thermal strain response was explored in the light of the current findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.