Abstract

The thermal expansion behavior of Li3AsW7O25 has been studied. The temperature‐dependent development of crystal structural parameters was obtained from Rietveld refinement using neutron time of flight powder diffraction data. Modeling of the lattice thermal expansion was carried out using a Grüneisen first‐order approximation for the zero‐pressure equation of state, where the temperature‐dependent vibrational energy was calculated taking the Debye‐Einstein‐Anharmonicity approach. Temperature‐dependent Raman spectra shed light on some selective modes with unusual anharmonicity. Debye temperatures were calculated using three different theoretical approaches, namely, thermal expansion, mean‐squared isotropic atomic displacement parameter and heat capacity. Similarities as well as discrepancies between the numerical values obtained from different theoretical approaches are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call