Abstract

Strontium silicates are widely known as high thermal expansion materials, especially from glass ceramic sealing applications. However, the thermal expansion behavior of the pure crystalline phases is still unknown. Hence, SrSiO3 and Sr2SiO4 were characterized with dilatometry and high-temperature X-ray diffraction. The measured coefficients of thermal expansion (CTE) of Sr2SiO4 are strongly anisotropic and depending on the crystallographic direction vary between 3.9 and 16.6 × 10−6 K−1. SrSiO3 has a somewhat higher isotropy of thermal expansion than Sr2SiO4. The CTE in the respective crystallographic directions differs by only 1.9 × 10−6 K−1. The mean CTE is between 10.9 and 12.8 × 10−6 K−1 for SrSiO3 and Sr2SiO4, respectively. A comparison of the Sr-phases with Ba- and Ca-phases with the same stoichiometry is given with respect to the crystal structures and the CTE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.