Abstract

In this study, the thermal expansion and recrystallization behavior of amorphous Al and Ti are investigated using molecular dynamics simulations. Amorphous phases are obtained via rapid quenching from a liquid state and are subsequently heated at a rate of 1 K/ps. Using the change in simulation size over the course of heating, the thermal expansion coefficients of amorphous Al and Ti are calculated and compared to their crystalline counterparts. From a similar set of simulations, the recrystallization temperatures of Al and Ti are determined by analyzing their potential energy profiles. In addition, the change in volume as a result of the phase transition is quantified by comparing the atomic volumes of Al and Ti in both their amorphous and crystalline states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.