Abstract

The high-temperature phase stability of Ca10−x Cs x (PO4)6(OH)2, (x = 0–3) compositions synthesized by various wet chemical methods was investigated. The thermal expansion property of Ca10(PO4)6(OH)2 (abbreviated as CaHAp) and Cs-substituted CaHAp was measured by high-temperature XRD and dilatometry. The average crystallite size of the powders synthesized by wet chemical methods was found to be 10–50 nm range as shown by XRD and TEM. Up to 30 mol% Cs loading was observed to show only the apatite phase by XRD when the apatite powder was nanocrystalline in nature. However, high-temperature stability of the Cs-substituted system is limited to ≤5 mol%. Cs3(PO4) is observed to be separated out on heating the material above 773 K for compositions substituted with more than 5 mol% of Cs in the Ca-sublattice. The coefficient of thermal expansion measured by HTXRD is αa = 12.42 × 10−6 K−1, αc = 14.98 × 10−6 K−1; and αa = 12.62 × 10−6 K−1, αc = 12.57 × 10−6 K−1 for CaHAp and Ca9.78Cs0.2(PO4)6(OH)1.96, respectively, in the temperature range of 298-1083 K. Bulk thermal expansion measurements are seen to be in agreement with the lattice expansion results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.