Abstract

The paper focuses on in-situ high-temperature X-ray diffraction (HT-XRD) study on atmospheric plasma sprayed NiCrAlY coating. The sample was in-situ heated from 25 °C to 1150 °C in a controlled atmosphere (3 × 10−4 bar), and the corresponding X-ray diffraction patterns for different temperatures were recorded. The effect of temperature on crystallite size, lattice strain, and coefficient of linear thermal expansion was studied. Major phases identified are γ-Ni, γ’-Ni3Al, β-NiAl, and α-Cr. The formation of stable α-Al2O3 and spinel was found above 1000 °C. The transformation of β to γ’ and γ phase was observed as a function of temperature. The equilibrium phases and the thermal expansion of disordered Face Centered Cubic (FCC) and Body Centered Cubic (BCC) phases were predicted and supported by Thermo-Calc prediction for the stable temperature range. Results showed that the non-equilibrium microstructure produced by thermal spray process did not alter the thermal expansion behaviour. In-situ treatment resulted in microstructure and elemental homogenization. The thermal expansion and mechanism of phase evolution were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call