Abstract
A series of solid solutions of (Sm2 - xMgx)Zr2O7 - x/2 pyrochlores were prepared by a solid-state reaction and characterized by X-ray diffraction, high-temperature dilatometry, Raman spectroscopy, and X-ray photoelectron spectroscopy. X-ray diffraction and Raman spectroscopy reveal that MgO doping does not break down the pyrochlore structure of Sm2Zr2O7 for all of the samples, though it increases the degree of structure disorder. However, the thermal expansion coefficient is remarkably increased through doping up to x = 0.075 with a maximum value around 11.94 × 10-6 K-1 (room temperature to 1000 °C), which can mitigate the mismatches of thermal expansion in the high-temperature applications of Sm2Zr2O7. A new solid−solution mechanism that is different from previous research was proposed and confirmed by analyzing the variation of the lattice parameters, experimental density, and X-ray photoelectron spectroscopy of samples. It involves the transformation of the solid−solution model about Mg2+ interstitial and substitution with a turning point at composition point x = 0.075. This transformation and consequently the variation of lattice energy may be responsible for the variation of the thermal expansion coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.