Abstract
Thermally excited plasma modes are observed in trapped, near-thermal-equilibrium pure electron plasmas over a temperature range of 0.05<T<5 eV. The measured thermal emission spectra together with a separate measurement of the wave absorption coefficient uniquely determines the temperature. Alternately, kinetic theory including the antenna geometry and the measured mode damping (i.e. spectral width) gives the plasma impedance, obviating the reflection measurement. This non-destructive temperature diagnostic agrees well with standard diagnostics, and may be useful for expensive species such as anti-matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.