Abstract

Calculations of the properties of monolayer xenon/graphite for temperatures up to its triple point at 100 K are reported. The average lattice constant and orientational epitaxy angle for the monolayer solid are evaluated along its (two-dimensional) sublimation curve. The incommensurate rotated lattice approaches the incommensurate aligned configuration as the melting temperature is approached, as in experiments. The calculated temperature, latent heat of melting, and solid-liquid density difference at the triple point agree with experiment. The methods include molecular dynamics simulations for large submonolayer patches of xenon and both self-consistent-phonon and perturbation-variation approximations. An overall quantitative agreement between the simulations, calculations, and experimental data is achieved with an interaction model that includes the spatially periodic xenon-graphite corrugation energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.