Abstract

Direct observation of temperature dependence of individual bands of semiconductors for a wide temperature region is not straightforward, in particular. However, this fundamental property is a prerequisite in understanding the electron-phonon coupling of semiconductors. Here we apply \emph{ab initio} many body perturbation theory to the electron-phonon coupling on hexagonal silicon carbide (SiC) crystals and determine the temperature dependence of the bands. We find a significant electron-phonon renormalization of the band gap at 0~K. Both the conduction and valence bands shift at elevated temperatures exhibiting a different behavior. We compare our theoretical results with the observed thermal evolution of SiC band edges, and discuss our findings in the light of high temperature SiC electronics and defect qubits operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.