Abstract

Helium-containing titanium films synthesized by magnetron sputtering method were investigated using thermal desorption spectrometry (TDS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Helium evolution behaviors under thermal treatment from room temperature to 1500°C were characterized. Four peaks appeared in TDS at around 100, 420, 700, and 1250°C were identified and attributed to helium desorption from the specimen surface, substitutional helium (helium atom in a vacancy), small HemVn clusters with different helium-to-vacancy ratios, and helium bubbles or voids, respectively. The helium evolution under thermal treatment composed of two coexisting and competing processes, where the faster process dominated in relevant temperature range, i.e. helium diffusion and release at low temperatures, and bubble or void formation at high temperatures. Three characteristic temperatures in TDS were identified in description of the phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.