Abstract

Al2O3–CaO–Cr2O3 castables are required for various furnaces linings due to their excellent corrosion resistance. However, toxic and water-soluble Cr(VI) could be generated in these linings during service. In this study Al2O3–CaO–Cr2O3 castables were prepared and heated at 300–1500 °C in air and coke bed to simulate actual service conditions. The formations of various phases were investigated by XRD and SEM-EDS. The Cr(VI) compounds CaCrO4 and Ca4Al6CrO16 formed in air at 300–900 °C and 900–1300 °C respectively, while C12A7 and CA2 were generated rather than forming Cr(VI) compounds in coke bed at 700–1300 °C. However, at 1500 °C, nearly all the chromium existed in the form of (Al1-xCrx)2O3 solid solution in both atmosphere. As a result, the specimens treated in air contained 185.0–1697.8 mg/kg of Cr(VI) at 500–1300 °C but only 17.2 mg/kg of Cr(VI) at 1500 °C, whereas specimens treated in coke bed exhibited extremely low Cr(VI) concentration in the whole temperature range studied. Moreover, in coke bed, the mutual diffusion between Cr2O3 and Al2O3 was suppressed and a trace of Cr2O3 would even be reduced to form chromium-containing carbides on its surface, which would hindered the sintering process and hence lower the density as well as strength of the castables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call