Abstract

The thermal evolution of a slate rock sample (Berja, Almeria, Spain) has been studied. The phase minerals identified in this sample were mica (illite), chlorite (clinochlore) and quartz as major components, with minor microcline, iron oxide and a mixed-layer or interstratified phase (montmorillonite-chlorite). This slate is highly silico-aluminous (48.33 mass% silica, 22.04 mass% alumina), and ca. 20 mass% of other elements, mainly Fe2O3 (8.35 mass%), alkaline-earths and alkaline oxides. Two main endothermic DTA effects, centered at 640 and 730°C, were observed. The more important contribution of total mass loss (7.15 mass%) was found between 500–900°C, with two DTG peaks detected at 630 and 725°C. All these effects were associated to the dehydroxylation of structural OH groups of 2:1 layered silicates mixed in the slate. The dehydroxylation of the layered silicates evidenced by dilatometry, produced a rapid increase of expansion between 600–800°C. The thermal evolution of the slate upper 800°C indicated the first sintering effects associated to shrinkage, which is also favoured by its low particle size (average 23 μm) and the presence of a liquid or vitreous phase as increasing the heating temperature. The application of thermal diffractometry to the slate sample allowed to study the formation of dehydroxylated crystalline phases from the layered silicates after heating. At 1000°C, β-quartz, dehydroxylated illite, iron oxide, relicts of microcline and the vitreous phase were present in the sample. All these results are interesting to know the thermal behaviour of a complex mineral mixture as identified in the slate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call