Abstract

Thermally induced errors have been significant factors affecting machine tool accuracy. In this paper, the thermal spindle error and thermal feed axis error have been considered, and a measurement/compensation system for thermal error is introduced. Several modelling techniques for thermal errors are also implemented for the thermal error prediction; i.e. multiple linear regression, neural network, and the system identification methods, etc. The performances of the thermal error modelling techniques are evaluated and compared, showing that the system identification method is the optimum model having the least deviation. The thermal error model for the feed axis is composed of geometric terms and thermal terms. The volumetric errors are calculated, combining the spindle thermal error and feed axis thermal error. In order to compensate for the thermal error in real-time, the coordinates of the CNC controller are modified in the PMC program. After real-time compensation, the machine tool accuracy improved about 4-5 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.