Abstract

Doppler–Stark spectrometry and laser Thomson scattering diagnostics for helium plasmas were applied to the MAP-II (material and plasma) steady-state linear divertor simulator at the University of Tokyo. In recombining plasmas, as the volumetric recombination proceeded, atomic, ionic and electron temperatures converged to the same values, which indicated the achievement of thermal equilibrium. On the other hand, in ionizing plasmas, in addition to the collisional heating of bulk atoms, excess heating of atoms in the high principal quantum number states (above Griem’s boundary) was observed. This disequilibrium feature can be attributed to the presence of two prevailing conditions: that the characteristic time of the charge-exchange process of the atoms with ions in the system became shorter than the lifetime of the excited atoms spent above Griem’s boundary, and that the population influx from above Griem’s boundary is considerably larger than that from below the boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call