Abstract
The thermal equation of state of ferropericlase [(Mg{sub 0.75}Fe{sub 0.25})O] has been investigated by synchrotron X-ray diffraction up to 140 GPa and 2000 K in a laser-heated diamond anvil cell. Based on results at high pressure-temperature conditions, the derived phase diagram shows that the spin crossover widens at elevated temperatures. Along the lower-mantle geotherm, the spin crossover occurs between 1700 km and 2700 km depth. Compared to the high-spin state, thermoelastic modeling of the data shows a {approx}1.2% increase in density, a factor of two increase in thermal expansion coefficient over a range of 1000 km, and a maximum decrease of 37% and 13% in bulk modulus and bulk sound velocity, respectively, at {approx}2180 km depth across the spin crossover. These anomalous behaviors in the thermoelastic properties of ferropericlase across the spin crossover must be taken into account in order to understand the seismic signatures and geodynamics of the lower mantle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.