Abstract

The large number of thermal indices introduced in the literature poses a challenge to identify the appropriate one for a given application. The aim of this study was to examine the effectiveness of widely used indices in quantifying the thermal environment for operational weather applications within a Mediterranean climate. Eight indices (six simple and two thermo-physiological) were considered, i.e., apparent temperature, heat index, humidex, net effective temperature (NET), physiologically equivalent temperature (PET), universal thermal climate index (UTCI), wet-bulb globe temperature, and wind chill temperature. They were estimated using hourly meteorological data between 2010 and 2021, recorded in 15 stations from the Automatic Weather Station Network of the National Observatory of Athens in the Athens metropolitan area, Greece. The statistical analysis focused on examining indices’ sensitivity to variations of the thermal environment. NET, PET, and UTCI were evaluated as suitable for operational use, assessing both cool and warm environments, and extending their estimations to the entire range of their assessment scales. NET and PET often tended to classify thermal perception in the negative categories of their scales, with 63% of NET and 56% of PET estimations falling within the range of cool/slightly cool to very cold. UTCI estimations in the negative categories accounted for 25.8% (p < 0.001), while most estimations were classified in the neutral category (53.1%). The common occasions of extreme warm conditions in terms of both air temperature (Tair) and NET was 77.7%, Tair and UTCI 64.4%, and Tair and PET 33.6% (p < 0.001). According to the indices considered and the method followed, NET and UTCI satisfied sufficiently the requirements for operational use in the climate conditions of the Mediterranean climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.