Abstract

Large scale thermal energy storage for solar heating applications can be accomplished in the ground through the installation of an array of vertical heat exchange boreholes or U-tubes. Simulation modeling of the storage subsystem and its integration with the total system is essential for design and performance evaluation. Although U-tube storage design is especially attractive in clay soils and preferable to boreholes in many geological conditions, only a borehole simulation model is currently available, validated, and integrated into a system simulation model. This article presents a comparative analysis of the heat transfer from boreholes and U-tubes using analytical solutions, finite element modeling, and the available simulation model. The analysis is used to support the development of a methodology by which the heat transfer of any U-tube configuration can be modeled by appropriately specifying parameters in the borehole storage simulation model. The borehole model can then be used to model the storage subsystem integrated within a total system simulation model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.