Abstract

Abstract Phase change materials (PCMs) are capable of storing and releasing large amounts of latent heat thermal energy when undergoes phase change. They are developed for various building applications such as thermal energy storage, thermal protection, cooling, air-conditioning, waste heat recovery and for solar heating systems. Paraffin PCMs have low cost and a moderate thermal energy density, though a low thermal conductivity. PCM microencapsulation is one of the best tools to enhance the heat transfer rate by enlarging the surface area. In this work ethyl cellulose as an environmental friendly encapsulating material was used to entrap n-hexadecane PCM by an emulsion-solvent evaporation method using poly(vinyl alcohol) (PVA), Tween 80 or poly(methacrylic acid sodium salt) (PMAA) emulsifier. The structure of the forming microparticles was predicted by determining the interfacial tensions between the phases. Both theoretically and in the experiments, composites prepared with PMAA showed the most desirable properties regarding the size (average: 80 m) and the latent heat storage capacity (of melting and freezing were 111.4 J/g and 117.9 J/g, respectively), furthermore, there was no significant temperature and enthalpy change observed after 1000 heating-cooling thermal cycles, thus, this microcomposite can be considered as suitable encapsulated PCM for thermal energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.