Abstract

In Concentrating Solar Power (CSP) systems, solar radiation allows to keep the Heat Transfer Fluid (HTF) at the design temperature (250-400°C using thermal oil) during daylight. During night, the thermal losses of the receiver tubes lead to a fast reduction of this temperature. The very first hours of daily solar irradiance are used to warm-up the Solar Field to the nominal temperature. This work focuses on a detailed analysis of the thermal losses of a 8,400 m2 Solar Field based on Linear Fresnel Collectors (LFC) using thermal oil as Heat Transfer Fluid. The proposed simulation model evaluates the performance of the Solar Field as a function of solar radiation, solar position, ambient temperature and wind speed for given values of the main geometrical and technical characteristics of the SF components (insulated piping and solar receivers), as well as for assigned thermodynamic properties of the Heat Transfer Fluid. The time-step considered (1 second) and the dense spatial discretization chosen allow the energy-balance-equation-based model to be suited to simulate night, warm-up and full-operation phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.