Abstract
While relying on energy harvesting to power Internet of Things (IoT) devices eliminates the maintenance burden of battery replacement, energy generation fluctuation constitutes a major source of uncertainty to design reliable self-powered IoT devices. To characterize spatial-temporal variability of energy harvesting, data acquisition campaigns are needed across the range of potential harvesting sources. In this work we present a dataset to characterize thermal energy sources in residential settings by measuring thermoelectric generator (TEG) operating conditions over 16 deployment locations for periods ranging from 19 to 53 days. We present our easy-to-use thermal energy measurement platform built from off-the-shelf component modules and a custom TEG interface circuit. We demonstrate how the collected measurements can inform the design of energy harvesting IoT devices by deriving the TEG's maximum power output and estimating the available energy at each harvesting location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.