Abstract
Aerosol deposition (AD) is a coating process wherein aerosol particles are impacted on a target substrate. There are fundamental differences between the AD process (cold impact), where particle translational kinetic energy is high and thermal energy is low, and thermal spray deposition (thermal impact), where translational energy is lower but thermal energy is high. To better compare cold and thermal impact effects on particles, we carried out molecular dynamics simulations using yttria-stabilized zirconia (YSZ) nanoparticles on YSZ substrates as a model system. We performed cold impact simulations at 300 K with variable impact velocity in the 500 ms−1–1500 ms−1 range to understand how increasing translational kinetic energy affects thermal energy and mechanical evolution. We then performed thermal impact simulations at variable temperature and impact velocity, but where the total kinetic energy of the nanoparticle was equivalent to that of a 300 K, 1000 ms−1 impact. In cold impact, the temperature increases in YSZ nanoparticles at a rate of 1013–1014Ks−1, and large temperature gradients result. Conversely, in thermal impact, nanoparticle temperatures remain uniform. The temperature gradients during cold impact coincide with plastic deformation in nanoparticles, while with larger thermal energies, plastic deformation is reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.