Abstract

A surprising observation in dusty plasma experiments is that the dust thermal energy density, P_{d}∝n_{d}T_{d}, is typically much greater than n_{d}T_{n} (where n_{d} and T_{d} are the dust density and temperature, and T_{n} is the neutral temperature), even though the dust particles would be expected to be in thermal equilibrium with the neutrals. We show here, theoretically and experimentally, that the anomalously high dust thermal energy density can be accounted for if electrostatic interactions between the dust particles and the background plasma are taken into account. Thus, the dust pressure in dusty plasma is mostly of electrostatic origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.