Abstract

In this paper, we proposed a novel nano-gap thermophotovoltaic (TPV) device made up of thin-films including the radiator. The optical, electrical, and thermal responses and performance of the device were assessed using coupled opto-electro-thermal numerical simulation. The device design consists of a thin-film tungsten radiator which is paired with a thin-film silicon TPV cell across a nanometric vacuum gap. Results were simulated based on experimental properties available in the current literature database. It is discovered that the maximum electrical power output of the thin-film nano-gap TPV device increases with cell temperature up to a certain threshold value due to improvements in generated photocurrent. Thin-film tungsten as a radiator is shown to improve radiative heat transfer above the bandgap compared to conventional bulk tungsten. The effect of cell thickness on responses and performance was also analysed. A 1-μm cell produces better performance over thinner thicknesses at the cost of greater cooling requirements. However, the improvements in output power offset the cooling costs, allowing for consistently favourable efficiencies. Finally, it is shown that the temperature profile in silicon thin-films under convective cooling can be approximated as uniform, simplifying the heat transport modelling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.