Abstract

Heat sink has been widely used as a cooling device for electronic systems in recent years. Because of the considerable heat generated by electronic devices and low efficiency of conventional heat sinks, a large number of researches have been focused on the performance enhancement of these systems. Innovative heat sink in the presence of Al2O3-water nanofluid is experimentally investigated in this study. The effects of adding various volume fractions of nanoparticles on the convective heat transfer coefficient, pressure drop, thermal resistance and heat sink base temperature are investigated in different flow rates from 6.14 to 32.2 (cm3/s). The obtained results reveal that the convective heat transfer enhances 16% and thermal resistance reduces more than 15%. The innovative thermal energy absorption system in present research is a tangential heat sink with impinging liquid jet and elliptical cross section which is expected to be able to achieve significant enhancement in thermal energy removal as a cooling device, which is proposed as the novelty here. Also comparison between cylindrical and elliptical cross sections in this type of heat sink is carried out. The results disclose that using tangential heat sink with liquid jet impingement achieves convective heat transfer coefficient 2.26 times greater than conventional heat sink in the presence of pure water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.