Abstract

The photopyroelectric (PPE) technique was used for the determination of the thermal effusivity and thermal conductivity of biodiesel in diesel and other binary liquid mixtures, precisely, ethanol, and ethylene glycol in water. The front configuration (FPPE) has been explored in the frequency scan approach for obtaining thermal-effusivity values. Measurements show good reproducibility, with uncertainties around 1 % to 2 %, and the results for reference samples, such as ethanol and water, are in good agreement with literature values. The thermal-conductivity values of all samples were determined using the thermal-effusivity data presented here and the thermal-diffusivity data of exactly the same set of samples, reported elsewhere. Based on these results, the different strengths in the molecular interactions related to the several mixtures were evidenced, as proposed by Dadarlat et al. It was shown that, indeed, the thermal effusivity is the property presenting the smallest sensitivity for the molecular association phenomenon, while the thermal conductivity presents an intermediate sensitivity. Nevertheless, the analysis of both properties revealed the existence of weak cohesive interactions among the hydrocarbons of diesel and the esters of biodiesel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call