Abstract
The effects of implantation temperature and post-implantation thermal annealing on the Ga+ ion beam induced optical contrast formation in hydrogenated silicon-carbon alloy (a-SiC:H) films and underlying structural modifications have been studied. The optical contrast formed (between implanted and unimplanted regions of the film material) has been made use of in the form of optical pattern formation by computer-operated Ga+-focused ion beam. Possible applications of this effect in the area of submicron lithography and high-density optical data storage have been suggested with regard to the most widely spread focused micro-beam systems based on Ga+ liquid metal ion sources. The implanted samples were structurally analysed using vibrational spectroscopies, like Raman and infra-red (IR) spectroscopy, to define optimum implantation conditions. The precise role of implantation temperature effects, i.e. the target temperature during Ga+ ion irradiation, on the structural modification obtainable has been therefore a key part of this study. Appropriate post-implantation annealing treatments were also studied, since these are expected to offer further benefits in reducing the required ion dose and enhancing the optical contrast, thus increasing the cost-effectiveness of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.