Abstract

We have used electrical impedance spectroscopy to determine the dielectric characteristics of polymeric films prepared by incorporating varying amounts of methyl orange (MO), an azobenzene dye, into solid films of polyvinyl alcohol (PVA), an insulating polymer. By mapping the variation of relevant parameters such as the dielectric relaxation time, we have analyzed how thermal effects would affect the charge transport and polarization processes in the MO/PVA composite samples as the frequency of an applied external field and the temperature were varied in a controlled manner. We interpret the results in terms of number and size of the dye aggregates in the polymeric matrix, by correlating thermal and polarization effects to the temperature and the relative amount of MO in the composite films. Finally, we show that the electrical characteristics of the MO/PVA samples can be modified by light incidence, a fact that confirms the possibility of using these composites in (light written)-(electrically read) solid-state memory devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call