Abstract
SiC power devices are considered as one of the most prospective candidates for new generation wide-bandgap and large-voltage applications, such as smart grid, electric vehicles and wind power systems. However, due to structural CTE mismatches and harsh thermal conditions, the die-attachments in SiC power devices becomes a fundamental and critical issue for the durability and long-term reliability of power electronics devices. In this paper, a computational method based on fracture phase-field modeling is implemented to analyze the thermal effects and fracture behavior of chip attachments under power cycling conditions. Fracture phase-field modeling is applied to understand the fracture behavior of chip attachments, which play crucial roles in mechanical supporting and thermo-electrical connections of SiC power devices. Utilizing UMAT and UEL in Abaqus, different power cycling conditions were performed to investigate the effects of power density and switching frequency on crack extension rate and crack morphology. Some promising results were obtained to guide the power cycling failure analysis of SiC power devices in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.