Abstract

PurposeTo objectively determine whether there is potential thermal tissue damage during Tm:YAG laser-based LUTS treatment.MethodsOur experimental model was comprised of a prostatic resection trainer placed in a 37 °C water bath. In a hollowed-out central area simulating the urethral lumen, we placed a RigiFib 800 fibre, irrigation inflow regulated with a digital pump, and a type K thermocouple. A second thermocouple was inserted 0.5/1 cm adjacently and protected with an aluminum barrier to prevent it from urethral fluid. We investigated continuous and intermittent 120 W and 80 W laser application with various irrigation rates in eight measurement sessions lasting up to 14 min. Thermal measurements were recorded continuously and in real-time using MatLab. All experiments were repeated five times to balance out variations.ResultsContinuous laser application at 120 W and 125 ml/min caused a urethral ∆T of ~ 15 K and a parenchymal temperature increase of up to 7 K. With 50 ml/min irrigation, a urethral and parenchymal ∆T of 30 K and 15 K were reached, respectively. Subsequently and in absence of laser application, prostatic parenchyma needed over 16 min to reach baseline body temperature. At 80 W lower temperature increases were reached compared to similar irrigation but higher power.ConclusionsWe showed that potentially harming temperatures can be reached, especially during high laser power and low irrigation. The heat generation can also be conveyed to the prostate parenchyma and deeper structures, potentially affecting the neurovascular bundles. Further clinical studies with intracorporal temperature measurement are necessary to further investigate this potentially harming surgical adverse effect.

Highlights

  • The Thulium:yttrium–aluminium-garnet laser (Tm:YAG) offers several techniques for the treatment of male lower urinary tract symptoms (LUTS)

  • Current EAU guidelines provide the following recommendations regarding the use of Tm:YAG lasers in LUTS treatment: (1) Offer ThuVEP and ThuLEP to men with moderate to severe LUTS as alternatives to transurethral resection of the prostate (TURP) and Holmium laser enucleation (HoLEP), weak recommendation

  • Symptom relief efficacy with regard to IPSS, Qmax and PVR of all aforementioned Tm:YAG techniques has been shown in two meta-analyses (ThuVARP vs. TURP, [3, 4]), several ThuVEP case series [5, 6], and two RCTs comparing ThuLEP vs. bipolar enucleation/ bTURP [7, 8]

Read more

Summary

Introduction

The Thulium:yttrium–aluminium-garnet laser (Tm:YAG) offers several techniques for the treatment of male lower urinary tract symptoms (LUTS). Current EAU guidelines provide the following recommendations regarding the use of Tm:YAG lasers in LUTS treatment: (1) Offer ThuVEP and ThuLEP to men with moderate to severe LUTS as alternatives to transurethral resection of the prostate (TURP) and Holmium laser enucleation (HoLEP), weak recommendation. Symptom relief efficacy with regard to IPSS, Qmax and PVR of all aforementioned Tm:YAG techniques has been shown in two meta-analyses (ThuVARP vs TURP, [3, 4]), several ThuVEP case series [5, 6], and two RCTs comparing ThuLEP vs bipolar enucleation/ bTURP [7, 8]. The same study revealed no iatrogenic stress incontinence in the ThuLEP group, while in the TURP group only one patient (2.1%) resulted with postoperative stress incontinence [10]. A theoretically available laser power up to 200 W in ThuVA(R)P, besides a high tissue ablation efficiency, might bear a high risk for the development of significant temperature increases of the surrounding irrigation fluid and tissue

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.