Abstract

A theory is developed from first principles which includes all the important physical processes which affect the frequency of the free oscillations of a gas bubble. The components of the damping: viscosity, thermal conduction in the gas, and acoustic radiation are all determined. Numerical results for the damping are given for air bubbles in water. Since there is physical interest in the polytropic exponent, κ, (in pVκ = const.), the value of κ which gives the correct natural frequency is also determined. Numerical results for this κ for air bubbles in water are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.