Abstract

The thermodynamics of gauge theories on the noncommutative plane is studied in perturbation theory. For U(1) noncommutative Yang-Mills we compute the first quantum correction to the ideal gas free energy density and study their behavior in the low and high temperature regimes. Since the noncommutativity scale effectively cutoff interactions at large distances, the theory is regular in the infrared. In the case of U(N) noncommutative Yang-Mills we evaluate the two-loop free energy density and find that it depends on the noncommutativity parameter through the contribution of non-planar diagrams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call