Abstract
In this paper, we investigate thermal effects of the Jaynes–Cummings model (JCM) at finite temperature with a perturbative approach. We assume a single two-level atom and a single cavity mode to be initially in the thermal equilibrium state and the thermal coherent state, respectively, at a certain finite low temperature. Describing this system with Thermo Field Dynamics formalism, we obtain a low-temperature expansion of the atomic population inversion in a systematic manner. Letting the system evolve in time with the JCM Hamiltonian, we examine thermal effects of the collapse and the revival of the Rabi oscillations by means of the third-order perturbation theory under the low-temperature limit, that is to say, using the low-temperature expansion up to the third-order terms. From an intuitive discussion, we can expect that the period of the revival of the Rabi oscillations becomes longer as the temperature rises. Numerical results obtained with the perturbation theory reproduce well this temperature dependence of the period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.