Abstract

An investigation of thermal effects in a high-power Nd:YAG disk-type solid state laser pumped with different pump beam transverse profiles is carried out by numerical simulation based on the finite element method (FEM). Impact of the heat sink on the thermal effects is included in the simulation. The distribution of first principle stress, thermally induced birefringence, including the distribution and variation of the birefringence loss, are studied. The characteristics of the phase variation are analyzed with consideration of the temperature gradient, deformation, strain and thermal stress. Thermal lensing is explored as a function of pump power and of the radius pumped with different pump beam transverse profiles. The non-parabolic part of optical phase distortion is simulated. Furthermore, the characteristics of the bi-focus of the disk laser are also studied. Experiments on the maximum tensile stress distribution and depolarization loss are carried out. The presented calculations are in qualitative agreement with the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.