Abstract

We present a molecular dynamics study of the influence of temperature on defect generation and evolution in irradiated cubic silicon carbide. We simulated 10 keV displacement cascades, with an emphasis on the quantification of the spatial distribution of defects, at six different temperatures from 0 K to 2000 K under identical primary knock-on atom conditions. By post-processing the simulation results we analyzed the temporal evolution of vacancies, interstitials, and antisite defects, the spatial distribution of vacancies, and the distribution of vacancy cluster sizes. The majority of vacancies were found to be isolated at all temperatures. We found evidence of temperature dependence in C and Si replacements and C Si antisite formation, as well as reduced damage generation behavior due to enhanced defect relaxation at 2000 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.