Abstract
The aim of this study was to evaluate thermal changes, dentin ablation removal capacity, and morphological aspects of sound and demineralized human dentin surface irradiated with different output energies of an erbium: yttrium-aluminium-garnet (Er:YAG) laser. Eighty sound human tooth specimens were assigned into two groups: demineralized dentin and sound dentin (control group). The dentin groups were subdivided into four subgroups (n = 10) according to the irradiation energy used (120, 160, 200, or 250 mJ) at a constant frequency level of 6 Hz, in focused mode, and under refrigeration. Quantitative analysis of the sound and carious dentin ablation was performed using light microscopy (LM) by measuring (mm) the remaining demineralized tissue with the Axion Vision™ software. Qualitative analysis was performed using the images obtained with a scanning electron microscope (SEM), and the temperature increase was recorded with an infrared digital thermometer. The Er:YAG laser promoted a gradual increase in temperature for all groups, and no difference was observed between the sound and demineralized dentin. The groups of 200 and 250 mJ showed the highest values, yet a variation in temperature did not exceed 5 °C. The energy output of 120 mJ selectively removed demineralized tissue when compared to 250 mJ, while also providing more regular surfaces in the cavity preparation. It was concluded that the temperature increase during sound and demineralized dentin removal had a strong positive correlation with the Er:YAG laser energy level output. However, the higher energies used did not present selectivity to the demineralized tissue, and the parameters used did not cause an increase in temperature over 5 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.