Abstract
A set of equations is derived to calculate the stationary temperature and concentration of a solution in a overcritical droplet with regard to the heat release accompanying the condensation of a binary mixture of vapors in a diffusion or free-molecular regime. In the approximation of an ideal solution, relations are found for the stationary temperature of droplet growing under the conditions of strong and weak thermal effects. For the general case and the cases of strong and weak thermal effects, the temperature and concentration of the droplet and the coefficient of the thermal deceleration of the droplet growth are calculated as functions of the density of a passive gas. The influence of the condensation heat values of the first and second components of the mixture on the stationary temperature and concentration of the solution in the growing droplet is investigated separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.