Abstract
This paper investigates the thermal effect on the dynamic error of a high-precision machine worktable during operation. The thermo-mechanical model was established to obtain the motion errors of the worktable by considering the combined effects of varying internal heat sources and external thermal drifts. The temperature tests were performed to obtain the initial conditions of the model and provide a verification for the analytical convection coefficients and heat flux, which were obtained by inverse analysis. The predicted yawing errors of the worktable were confirmed by interferometer tests. Numerical and experimental results suggest that the environmental temperature fluctuation is the largest contributor to the motion errors of the worktable, and they increase with the increasing of environmental temperature. This study allows deeper insights into the underlying mechanisms that result in the motion accuracy variations of the worktable due to the thermal effects, which can provide a strategy for manufacture to further compensate the thermal error and realize ultra precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.