Abstract

The performance of torque converters, which use hydraulic oil as the working medium to transmit power, are severely affected by the operating temperature because various oil properties, such as viscosity, density and saturated pressure, vary drastically with temperature change. To study the thermal effect on the cavitation characteristics of viscous oil, we developed a full flow passage geometry and computational fluid dynamics (CFD) model with cavitation based on the finite volume method (FVM) to predict and analyze cavitation behavior and thermal effect in a torque converter. The results show that the critical cavitation number and critical cavitation temperature of the tested torque converter are 9.2 and 30 °C, respectively, and increasing the temperature reduces the cavitation number and induces the generation and intensification of cavitation. Besides, although higher temperature improves the transmission efficiency and capacity constant of the torque converter, it greatly magnifies the influence of cavitation on the hydrodynamic performance. In severe cases, it reduces the hydraulic performance by 9.3% and the flow velocity by 11.8% at 100 °C. Meanwhile, the cavitation flow field and the configuration of cavitation are also greatly affected by temperature. About 11.9% of the surface of the stator blade was covered by cavitation bubbles with the vapor volume fraction of 88.1% at 100 °C. Moreover, 30–60 °C is the optimum operating temperature range in terms of cavitations effect with no pronounced cavitation occurrence or that the cavitation degree is too weak to affect the performance in the mentioned temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.