Abstract

To accurately, efficiently and stably predict the thermal displacement of the spindle, a prediction model based on the beluga whale algorithm (BWO) optimized bi-directional long and short-term memory neural network (BiLSTM) is introduced in this paper. Firstly, the thermal characterization and simulation analysis of the spindle are carried out, and the temperature and thermal displacement change characteristics of the spindle are obtained. Then the thermal deformation experiment of the spindle is carried out, and the temperature and displacement sensors are set up reasonably according to the temperature and thermal displacement change characteristics of the spindle, and the experimental data are collected and analyzed. The adaptive and globally convergent BWO is selected to optimize network parameters of BiLSTM, and the BWO-BiLSTM prediction model is constructed by learning the nonlinear correlation characteristics between spindle temperature and axial thermal displacement. The constructed BWO-BiLSTM prediction model is compared with other prediction models, and it is found through analysis that the prediction results output from the BWO-BiLSTM model have better accuracy and stability. The results of the study can provide a certain theoretical basis and technical support in predicting the spindle thermal displacement, which can help to promote the precision machining production of electric spindles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call