Abstract
The method of similarity solution is used to study the influence of lateral mass flux and thermal dispersion on non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations and the coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The suction/injection velocity distribution has been assumed to have power function form Axl, where x is the distance from the leading edge and the wall temperature distribution is assumed to be uniform. When l=−1/2, similarity solution is possible, and the results indicate that the boundary layer thickness decreases where as the heat transfer rate increases as the mass flux parameter passes from injection domain to the suction domain. The increase in the thermal dispersion parameter is observed to enhance the heat transfer. The combined effect of thermal dispersion and fluid suction/injection on the heat transfer rate is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.